带有性能保障的深度强化学习 🔍
it-ebooks iBooker it-ebooks, it-ebooks-extra
英语 [en] · 中文 [zh] · PDF · 13.3MB · 2019 · 📘 非小说类图书 · 🚀/lgli/lgrs · Save
描述
"This book discusses methods and algorithms for the near-optimal adaptive control of nonlinear systems, including the corresponding theoretical analysis and simulative examples, and presents two innovative methods for the redundancy resolution of redundant manipulators with consideration of parameter uncertainty and periodic disturbances. It also reports on a series of systematic investigations on a near-optimal adaptive control method based on the Taylor expansion, neural networks, estimator design approaches, and the idea of sliding mode control, focusing on the tracking control problem of nonlinear systems under different scenarios. The book culminates with a presentation of two new redundancy resolution methods; one addresses adaptive kinematic control of redundant manipulators, and the other centers on the effect of periodic input disturbance on redundancy resolution. Each self-contained chapter is clearly written, making the book accessible to graduate students as well as academic and industrial researchers in the fields of adaptive and optimal control, robotics, and dynamic neural networks." - Prové de l'editor
备用文件名
lgrsnf/带有性能保障的深度强化学习.pdf
备选标题
Deep Reinforcement Learning with Guaranteed Performance (Studies in Systems, Decision and Control, 265)
备选标题
Deep Reinforcement Learning with Guaranteed Performance : A Lyapunov-Based Approach
备选作者
Zhang, Yinyan; Li, Shuai; Zhou, Xuefeng
备选作者
Yinyan Zhang; Shuai Li; Xuefeng Zhou
备选作者
YINYAN LI, SHUAI ZHOU, XUEFENG ZHANG
备用出版商
Springer International Publishing
备用出版商
Springer Nature Switzerland AG
备用版本
Studies in systems, decision and control (Online), 1st ed. 2020, Cham, 2020
备用版本
Studies in systems, decision and control, Cham, Switzerland, 2020
备用版本
Studies in Systems, Decision and Control, 2019
备用版本
Place of publication not identified, 2020
备用版本
Springer Nature, Cham, 2019
备用版本
Switzerland, Switzerland
备用版本
1st ed. 2020, 2019
备用版本
Nov 10, 2019
备用版本
2, 20191109
元数据中的注释
Source title: Deep Reinforcement Learning with Guaranteed Performance: A Lyapunov-Based Approach (Studies in Systems, Decision and Control)
备用描述
Studies in Systems, Decision and Control
Erscheinungsdatum: 20.11.2019
开源日期
2024-02-25
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。