对抗性机器学习 🔍
it-ebooks iBooker it-ebooks, it-ebooks-extra
英语 [en] · 中文 [zh] · PDF · 5.3MB · 2023 · 📘 非小说类图书 · 🚀/lgli/lgrs · Save
描述
A critical challenge in deep learning is the vulnerability of deep learning networks to security attacks from intelligent cyber adversaries. Even innocuous perturbations to the training data can be used to manipulate the behaviour of deep networks in unintended ways.  In this book, we review the latest developments in adversarial attack technologies in computer vision; natural language processing; and cybersecurity with regard to multidimensional, textual and image data, sequence data, and temporal data. In turn, we assess the robustness properties of deep learning networks to produce a taxonomy of adversarial examples that characterises the security of learning systems using game theoretical adversarial deep learning algorithms. The state-of-the-art in adversarial perturbation-based privacy protection mechanisms is also reviewed.
We propose new adversary types for game theoretical objectives in non-stationary computational learning environments. Proper quantification of the hypothesis set in the decision problems of our research leads to various functional problems, oracular problems, sampling tasks, and optimization problems. We also address the defence mechanisms currently available for deep learning models deployed in real-world environments. The learning theories used in these defence mechanisms concern data representations, feature manipulations, misclassifications costs, sensitivity landscapes, distributional robustness, and complexity classes of the adversarial deep learning algorithms and their applications.
In closing, we propose future research directions in adversarial deep learning applications for resilient learning system design and review formalized learning assumptions concerning the attack surfaces and robustness characteristics of artificial intelligence applications so as to deconstruct the contemporary adversarial deep learning designs. Given its scope, the book will be of interest to Adversarial Machine Learning practitioners and Adversarial Artificial Intelligence researchers whose work involves the design and application of Adversarial Deep Learning.
备用文件名
lgrsnf/对抗性机器学习.pdf
备选标题
Adversarial machine learning attack surfaces, defence mechanisms, learning theories in artificial intelligence: attack taxonomies, defence mechanisms, and learning theories
备选标题
Adversarial Deep Learning in Cybersecurity : Attack Taxonomies, Defence Mechanisms, and Learning Theories
备选标题
ADVERSARIAL DEEP LEARNING IN CYBERSECURITY : attack aneesh sreevallabh chivukula....et al
备选作者
Sreevallabh Chivukula, Aneesh, Yang, Xinghao, Liu, Bo, Liu, Wei, Zhou, Wanlei
备选作者
Aneesh Sreevallabh Chivukula; Xinghao Yang; Bo Liu; Wei Liu; Wanlei Zhou
备用出版商
Springer International Publishing AG
备用出版商
Springer Nature Switzerland AG
备用版本
Springer Nature, Cham, Switzerland, 2023
备用版本
Switzerland, Switzerland
备用版本
1st ed. 2022, 2022
备用版本
S.l, 2022
备用版本
uuuu
备用描述
Keine Beschreibung vorhanden.
Erscheinungsdatum: 07.03.2023
开源日期
2024-02-25
更多信息……
We strongly recommend that you support the author by buying or donating on their personal website, or borrowing in your local library.

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。