计算机视觉和深度学习中的领域自适应 🔍
it-ebooks iBooker it-ebooks, it-ebooks-extra
英语 [en] · 中文 [zh] · PDF · 8.1MB · 2020 · 📘 非小说类图书 · 🚀/lgli/lgrs · Save
描述
This book provides a survey of deep learning approaches to domain adaptation in computer vision. It gives the reader an overview of the state-of-the-art research in deep learning based domain adaptation. This book also discusses the various approaches to deep learning based domain adaptation in recent years. It outlines the importance of domain adaptation for the advancement of computer vision, consolidates the research in the area and provides the reader with promising directions for future research in domain adaptation. Divided into four parts, the first part of this book begins with an introduction to domain adaptation, which outlines the problem statement, the role of domain adaptation and the motivation for research in this area. It includes a chapter outlining pre-deep learning era domain adaptation techniques. The second part of this book highlights feature alignment based approaches to domain adaptation. The third part of this book outlines image alignment procedures for domain adaptation. The final section of this book presents novel directions for research in domain adaptation.  This book targets researchers working in artificial intelligence, machine learning, deep learning and computer vision. Industry professionals and entrepreneurs seeking to adopt deep learning into their applications will also be interested in this book.
备用文件名
lgrsnf/计算机视觉和深度学习中的领域自适应.pdf
备选标题
Domain Adaptation in Computer Vision with Deep Learning
备选作者
Venkateswara, Hemanth; Panchanathan, Sethuraman
备选作者
Hemanth Venkateswara; Sethuraman Panchanathan
备用出版商
Springer International Publishing : Imprint: Springer
备用出版商
Springer Nature Switzerland AG
备用版本
Place of publication not identified, 2020
备用版本
Springer Nature, Cham, Switzerland, 2020
备用版本
1st ed. 2020, Cham, 2020
备用版本
Switzerland, Switzerland
备用版本
Cham, cop. 2020
备用版本
Aug 18, 2020
备用描述
Keine Beschreibung vorhanden.
Erscheinungsdatum: 19.08.2020
开源日期
2024-02-25
更多信息……

🚀 快速下载

成为会员以支持书籍、论文等的长期保存。为了感谢您对我们的支持,您将获得高速下载权益。❤️

🐢 低速下载

由可信的合作方提供。 更多信息请参见常见问题解答。 (可能需要验证浏览器——无限次下载!)

所有选项下载的文件都相同,应该可以安全使用。即使这样,从互联网下载文件时始终要小心。例如,确保您的设备更新及时。
  • 对于大文件,我们建议使用下载管理器以防止中断。
    推荐的下载管理器:JDownloader
  • 您将需要一个电子书或 PDF 阅读器来打开文件,具体取决于文件格式。
    推荐的电子书阅读器:Anna的档案在线查看器ReadEraCalibre
  • 使用在线工具进行格式转换。
    推荐的转换工具:CloudConvertPrintFriendly
  • 您可以将 PDF 和 EPUB 文件发送到您的 Kindle 或 Kobo 电子阅读器。
    推荐的工具:亚马逊的“发送到 Kindle”djazz 的“发送到 Kobo/Kindle”
  • 支持作者和图书馆
    ✍️ 如果您喜欢这个并且能够负担得起,请考虑购买原版,或直接支持作者。
    📚 如果您当地的图书馆有这本书,请考虑在那里免费借阅。